Syntheses and Crystal Structures of the $d^{0.1,2}$ Metallepins [NbR₂(η -C₅H₅)₂][BF₄], [NbR₂(η -C₅H₅)₂], and [Na(18-Crown-6)(thf)₂][NbR₂(η -C₅H₅)₂] (thf = tetrahydrofuran); Reduction Product of [ZrR₂(η -C₅H₅)₂][R₂ = (*o*-CH₂C₆H₄)₂²⁻]

Lutz M. Engelhardt, Wing-Por Leung, Colin L. Raston, and Allan H. White

Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands WA 6009, Australia

Reaction of $[Nb\{(o-CH_2C_6H_4)_2\}(\eta-C_5H_5)_2]$ (1) with AgBF₄ gives $[Nb\{(o-CH_2C_6H_4)_2\}(\eta-C_5H_5)_2][BF_4]$ (2) and with Na $[C_{10}H_8]$ in the presence of 18-crown-6, $[Na(18-crown-6)(thf)_2]$ - $[Nb\{(o-CH_2C_6H_4)_2\}(\eta-C_5H_5)_2]$ (3) (thf = tetrahydrofuran), whereas reduction of $[Zr\{(o-CH_2C_6H_4)_2\}(\eta-C_5H_5)_2]$ results in a Zr–CH₂ cleavage; single crystal X-ray structure determinations on (1), (2), and (3), show a considerable variation in Nb–CH₂–C and CH₂–Nb–CH₂ angles, and in the torsion along the biphenyl axis, the angular changes at the niobium being in accordance with M.O. predictions $[CH_2-Nb-CH_2, 106.3(1)^{\circ} (d^{\circ}); 83.0^{\circ} (d^{1}); 80(1) (d^{2})].$

Recently we described a series of 5,7-dihydro-6*H*-dibenzo[*c*,*e*]metallepins of Ti, Zr, Hf, and Sn, all derived from both an organodilithium complex, [{Li(tmeda)}₂{ $(o-CH_2C_6H_4)_2$ }](tmeda = tetramethylethylenediamine) and a di-Grignard reagent.¹ We now report the syntheses and structures of the Group 5 d^{0,1,2} species [Nb{ $(o-CH_2C_6H_4)_2$ } $(\eta-C_5H_5)_2$]^{*n*} (*n* = 0, ±1) and the reduction of the neutral zirconium analogue; the d¹ niobium complex was found to be accessible using the di-Grignard reagent only. Principal features of interest include (i) the isolation of crystalline complexes for the sequence d⁰⁻², the anion of d² configuration being the first authenticated species of the type $[Nb(alkyl)_2(\eta-C_5H_5)_2]^{1-}$, and the conversion of (3) \rightarrow (2) with the reagent HBF₄·OMe₂; (ii) the complexes (2) and (3) are novel examples of niobocene metallepins of d⁰ and d² configurations; (iii) the structures of (1) \rightarrow (3) appear to be the first structurally characterized trio of complexes where the transition metal species are related by a sequential addition of a d electron, and (iv) the versatility of the ligand in accommodating a wide range of ligand 'bite' imposed by electronic constraints at the metal centre, *via* torsion along the biphenyl axis and variation in M-CH₂-C_{Ar} angle.

Prior to this work the only d² niobocene dialkyl complex

Table 1. Selected structural details.

	Compound		
	$(3),^{a} d^{2}$	(1), ^b d ¹	(2), $^{a} d^{0}$
Nb-CH ₂	2.35(3), 2.30(3)	2.297	2.249(3), 2.251(4)
Nb\eta-C	2.32(5)-2.50(6)	2.37(2)-2.45(2)	2.394(3) - 2.441(4)
	<2.38>	<2.41>	<2.41 ₈ >
Nb-Centroid	2.10, 2.06	2.10	2.10, 2.10
$Nb \cdot \cdot \cdot C_{\beta}$	3.35(3), 3.39(3)	3.26(1) - 3.29(1)	2.959(4), 2.960(4)
CH ₉ -Nb-CH ₉	80(1)	83.0	106.3(1)
Nb-CH ₂ -C _{Ar}	123(2), 123(2)	118.7	103.1(2), 102.7(2)
Centroid-Nb-Centroid	136.0	135.3	131.0
Biphenyl torsion angle	59.6	62.4	78.4

^a One complete niobium species in the asymmetric unit. ^b Results for the average of three molecules, one general and two on C₂ axes.

Scheme 1. Reagents and conditions: i, 0.08 M [{(thf)_nClMgC₆H₄- $CH_{2^{-0}}$ [1 equiv.) in thf, 20 °C; ii, Na $[C_{10}H_8]$ (1 equiv.), 18-crown-6 (1 equiv.), thf, 20 °C; iii, AgBF₄ (1 equiv.), thf, 20 °C; iv, HBF4 OMe2 (2 equiv.), thf.

reported was $[Nb(CH_2Ph)_2(\eta-C_5H_5)_2]^-$, studied electrochemically and not isolated.² The stability of (3) contrasts with chloride elimination on reduction of $[Nb(CH_2SiMe_3)Cl(\eta C_5H_4Me)_2$].³ As to the novelty of (2), the only other related d^o species are $[Nb(CH_2SiMe_3)_2(\eta-C_5H_5)_2]^+$ (ref. 4) and [Nb- $(CH_2Ph)_2(\eta - C_5H_5)_2]^+$ (not isolated).²

Reduction of the d^o zirconium derivative (4) results in heterolytic loss of CH2- from the metal co-ordination sphere (Scheme 1). This is based on e.s.r. data (1:2:1 hydrogen hyperfine coupling pattern) and the fact that such a reaction has been proposed for the reduction of $[Zr(CH_2C_6H_4CH_2-o)-$

 $(\eta - C_5 H_4 R)_2$] (R == H, SiMe₃).⁵

Figure 1. Molecular structure of $[Nb {(o-CH_2C_6H_4)_2}(\eta-C_5H_5)_2]^$ showing an approximate C_2 symmetry axis.

The structures of (1)—(3)[†] offer a unique opportunity for comparing perturbations originating entirely from addition of d electrons. The most dramatic changes in structure are those of d⁰ to d¹ rather than d¹ to d², borne out primarily by the Nb-CH2-C and CH2-Nb-CH2 angles and the torsion angle of the biphenyl moiety (Table 1), features that clearly demonstrate the flexibility of the bidentate ligand. Variation of CH₂-Nb-CH₂ angle with d^n has a theoretical basis. Successive addition of a d electron to the a_1 LUMO of (2) should result

[†] Crystal data: $C_{24}H_{22}Nb$ (1), orthorhombic, Pnn2, a = 31.985(9), $b = 10.875(3), c = 10.527(3) \text{ Å}, Z = 8; C_{24}H_{22}BF_4Nb$ (2), monoclinic, $P2_1/n, a = 13.602(6), b = 12.934(5), c = 12.623(5) \text{ Å},$ $\beta = 110.26(3)^\circ$, Z = 4; $C_{44}H_{64}NaNbO_8$ (3), triclinic, P1, a = 16.77(8), b = 14.68(3), c = 12.53(2)Å, $\alpha = 66.2(2)$, $\beta = 85.4(3)$, $\gamma = 66.2(3)^\circ$, Z = 2. All structures were determined at room temperature [295(1) K] from 2326 [(1)], 4163 [(2)], and 3430 [(3)] independent 'observed' reflections (Mo- K_{α} radiation). R and R_{w} values for (1), (2), and (3) are respectively 0.045, 0.046; 0.040, 0.053; and 0.133, 0.178.

Atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

in reduction of this angle.⁶ While the angles in (1) and (3) are unexceptional and are therefore possibly determined by constraints imposed by populating the a_1 orbital, that of (2) is larger than usual for d^o configurations, the origin of which may be an alkyl ligand interaction with the formally electron deficient metal centre. [The Nb-CH₂-C_β angle and Nb · · · C_β contact distances of (2) (Table 1) are significantly lower than those of (1) and (3).]

Two d¹ species related to (1), $[Nb(CH_2Ph)_2(\eta-C_5H_5)_2]^7$ and

[Nb(CH₂C₆H₄CH₂-o)(η -C₅H₄SiMe₃)₂]⁴ possess CH₂-Nb-CH₂ angles respectively of 79 and 72.5° [*cf.* 83° in (1)] and have corresponding metal hyperfine coupling constants of 8.76 and 7.72 mT [*cf.* 9.14 mT in (1)]. Thus for these complexes there is a good trend of angular variation *vs.* a(⁸³Nb), a feature which is consistent with the energy and degree of metal character of the HOMO being sensitive to the CH₂-Nb-CH₂ angle as noted recently for a wide variety of niobocene complexes.⁷

The sodium environments of two independent atoms in (3), both lying on crystallographic inversion centres, are hexagonal bipyramidal with the tetrahydrofuran (thf) oxygen atoms in the apical positions as in a dicyanophosphide salt⁸ [Na–O(18-crown-6) 2.68(2)—2.80(3), Na–O(thf) 2.28(2)—2.32(4) Å].

We thank the Australian Research Grant Scheme for support.

Received, 13th December 1982; Com. 1433

References

- 1 W-P. Leung and C. L. Raston, J. Organomet. Chem., 1982, 240, C1.
- 2 R. S. Threlkel and J. E. Bercaw, J. Am. Chem. Soc., 1981, 103, 2650.
- 3 G. S. Bristow, P. B. Hitchcock, and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1981, 1145.
- 4 M. F. Lappert and C. R. C. Milne, J. Chem. Soc., Chem. Commun., 1978, 925.
- 5 M. F. Lappert, T. R. Martin, C. R. C. Milne, J. L. Atwood, W. E. Hunter, and R. E. Pentilla, *J. Organomet. Chem.*, 1980, 192, C35.
- 6 J. W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 1976, 98, 1729.
- 7 P. B. Hitchcock, M. F. Lappert, and C. R. C. Milne, J. Chem. Soc., Dalton Trans., 1981, 180.
- 8 W. S. Sheldrick, J. Kroner, F. Zwaschka, and A. Schmidpeter, Angew. Chem., Int. Ed. Engl., 1979, 18, 934.